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Abstract— We propose a provenance framework which 

includes an expressive provenance model able to represent the 
provenance of any data object captured with various 
granularities. The model is represented according to relational 
and graph specifications. The framework is interoperable with 
two standard provenance models: OPM and PROV. In addition, 
the framework captures access control policies for data objects 
and secures the provenance storage itself. We have integrated 
our framework with CRIS - a real world system for managing 
scientific data. 
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I. INTRODUCTION 
Data provenance, one kind of metadata, pertains to the 

derivation history of a data object starting from its original 
sources [3]. The term data object refers to data in any format 
(e.g., files, database records, or workflow templates). One 
example of provenance model for scientific applications is 
Chimera [1] that documents workflows generating data. Data 
provenance is critical for many purposes including: assessing 
data quality based on its ancestral data and derivations, 
detecting sources of errors and anomalies, providing an audit 
trail for regulatory purposes, and assessing data 
trustworthiness.  

Building a comprehensive provenance infrastructure 
involves addressing the following requirements:  
1. multi-granualr provenance model: the provenance 

infrastructure should provide a rich provenance model 
capable to represent the provenance of data objects with 
different granularities (e.g., file, database record, data in a 
workflow);  

2. provenance queries: the infrastructure should support 
queries for inspecting various aspects of the provenance; 

3. security: the framework should be able to capture the access 
control policies, according to which users had been granted 
permissions to the data, at the time of data access;  the 
infrastructure should also control access to provenance data 
storage as provenance may be sensitive; 

4. interoperability services: the framework should provide 
services supporting provenance integration across different 
systems. 

Despite a large number of research efforts devoted to 
provenance management, only a few provenance 
infrastructures have been proposed. Chimera [1], myGrid [2], 
and Karma [7] are examples of provenance systems. However, 
the provenance models of these systems are tailored to their 

specific applications and therefore are not general enough. 
PASS [4] is a provenance management system for file systems; 
it provides a custom query tool but it does not support security 
and different granularity levels for provenance metadata. In 
addition, there are two standard provenance models: Open 
Provenance model (OPM) [5] and PROV [11]. These two 
models are interoperable and generic so that they are able to 
represent provenance for different systems and applications. 
However, their major limitation is that they are not able to 
represent metadata about access control policies. Ni et al. [8] 
has proposed a provenance model that focuses on access 
control policies for provenance. However, Ni’s model is not 
able to support different granularity levels. Sultana and Bertino 
[14] have designed an initial comprehensive provenance 
infrastructure. However, this infrastructure has several 
limitations, including the lack of a query language and lack of 
interoperability services for provenance. In addition, such 
framework has not been implemented nor integrated with an 
actual data management system. 

In this paper, we thus design and implement the first 
comprehensive provenance infrastructure addressing the four 
requirements discussed earlier. Our contributions include: 

� A data provenance model extended from the 
provenance model proposed by Sultana and Bertino 
[14]. We provide specifications of this model according 
to a relational and graph model. 

� A mapping ontology to support interoperation of our 
provenance model with both OPM and PROV. 

� The integration of our provenance framework with the 
Computational Research Infrastructure for Science 
(CRIS) [13]. CRIS is widely used at Purdue University 
for managing scientific data from many different 
research areas, including biology, bio-chemistry, water 
management, and social sciences. 

The rest of the paper is organized as follows: Section II 
introduces our provenance framework including the 
provenance model, mapping ontology. Section III discusses 
related work and Section IV outlines conclusions and future 
work. 

II. PROVENANCE FRAMEWORK 
Our provenance framework as shown in Fig. 1 is composed 

of several components that we discuss in what follows. 

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1



 
Figure 1: SimP Framework 

A. Provenance Model 
In our provenance model, called SimP, the provenance of a 

data object records the history of its input data, processes, 
operations, communications, actors, environments, and access 
controls. 

A process manipulates input data objects by performing a 
sequence of operations to generate other data objects. A 
process might be a service in a user application (e.g., a 
workflow in a scientific experiment application) or an 
operating system level process (e.g., executing a script by shell 
command in UNIX). At a more detailed level, an operation 
executes a sub-task which is part of a process execution. The 
operations may generate/modify persistent data or intermediate 
results. In provenance, it is crucial to capture the origin of the 
generated data. Such information is captured by a data lineage 
entity. In data lineage, a data item is described by the source 
data and the operations used to derive the data item from 
source data. Lineage helps in producing the data dependency 
graph of a data object and implicitly describing the process 
dependency. 

The operations in the same process or in two different 
processes interact by real or virtual messages. In our model, 
such interaction is referred to as communication. There are two 
types of communication between operations. The first type 
refers to the completion of an operation followed by the start of 
another operation. The second type refers to an operation 
executed (i.e., started and completed) within the execution of 
another operation. We refer to the first type of communication 
as sequential and to the second as composition. A 
communication may involve data passing if the operation 
which initiated the communication generates data. Examples of 
communications include data flow and copy-paste in UNIX. 
On the other hand, a process may initialize another process to 
be executed. The process which invokes the initialization is the 
parent process and the newly created process is the child 
process.  

Processes (including their operations) and data are 
manipulated by actors which can be human subjects or 
workflows. Capturing information about actors, who actuate 
the activities changing data objects, helps in detecting 
intrusion, data misuse, or system changes. A user may 
authorize other users to perform certain activities on his behalf. 
In this model, data objects are attributed to actors to identify 
users who inserted input data or generated output by executing 
a process. Processes also have a context that affects their 
execution and output. Such context is represented by the 

environment which refers to a set of parameters and system 
configurations. Environment information helps in 
understanding the system context in which processes were 
executed and data output were generated. 

Our model is security-aware. Following the model by Ni et 
al. [8], our model is able to represent the access control policies 
in place at the time of data manipulation by the actors. 
Information about access control policies include which actors 
are authorized to utilize which processes and operations on 
which data. Such information is modeled by the Access 
Control Policy entity which includes actor and policy 
information. The policy object might refer to processes, or 
operations specified by the policy subject.  

All fundamental provenance entities contain a domain 
attribute which might be used to specify the scope of 
provenance information (e.g., where processes and data 
manipulations executed) especially when providing a 
provenance storage for different systems. In addition, the 
domain value might include more detailed scope information 
(e.g., a particular application or workflow). The domain 
attribute is essential for providing an abstract domain view of 
the provenance graph. 

Our framework supports the specification of the 
provenance model according to two representations: relational 
and graph. 

1) Relational Representation  
The relational model representation of SimP is shown in 

Fig. 2. Based on the abstract description of our model, the 
fundamental entities are stored in six fundamental tables (i.e., 
Data, Processes, Operations, Actors, Environments, and 
Access Control Policies). In addition, there are tables 
maintaining many-to-many relationships among the 
fundamental tables (i.e., Lineages, Communications, Process 
Input Data, Process Output Data, Operation Input Data, 
Operation Output Data, and Delegations). These tables are 
connected through a set of referencing relations (i.e., foreign 
key constrains). Each table has a unique identifier and consists 
of several attributes. 

Each data record contains description, value, and actor ID. 
An example of a data object is a file. The actual data object 
identifier is different from data record identifier in the 
provenance storage. Suppose that the data object is a script file 
named fi.  This file might be edited by different users at 
different times. Thus, the provenance storage contains multiple 
records for fi and each record is identified by different data ID 
but the description attributes of these records are similar (i.e. 
fi). In our model, every data object is attributed to an actor to 
trace who created the object or generated it by executing a 
process.  

Each process record has a unique ID and is executed by an 
actor in a certain environment. A process manipulates certain 
data and may generate other data so process’s input and output 
data are recorded in the Process Input Data and Process Output 
Data tables. Processes are categorized into two types: 
application process or system process. If the process belongs to 
an application (e.g., a scientific workflow), it contains a 
workflow ID. Otherwise, it is a system process. In the case of a 
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system process, the workflow ID attribute refers to the 
workflow hosting the application process which encapsulates 
the system process. Each process has a description which is the 
actual identifier of the process (e.g., executing the script file 
(fi)). A process might be executed multiple times. Therefore, in 
order to capture provenance for the same process multiple 
times we have an automatic generated ID to distinguish process 
records. A process might be initialized (i.e., forked) by another 
process so we store such information in the parent process 
attribute. 

Operation record attributes include ID, description, and 
process ID. Depending on applications, the operation 
description attribute might contain different definitions (e.g., a 
function name or a block of source code statements). The 
output of an operation might be intermediate or persistent. The 
output is intermediate if it is used as input for another operation 
while a persistent output is final. The persistent output of 
operations is considered also as the output for the container 
process. On the other hand, all input data of a process can be 
input data for all its contained operations. 

 

Figure 2: ER-Diagram of the SimP Model 

Communication record attributes include description, 
carrier, the source operation ID, the destination operation ID, 
and type of communication. The detail level of the 
communication description depends on the applications. The 
communication channel (e.g., HTTP or SOAP) is described by 
the carrier attribute. The type of communication between two 
operations might be sequential or composition. 

Lineage record attributes include lineage ID, data ID, and 
the  ID of the operation that produced this data operating on the 

input data identified by the data ID. A data item has multiple 
lineage records if it is generated by an operation which 
received multiple input data. 

The attributes of an actor record include actor ID, 
description, and role. A role is a job of the actor. For an actor, 
the most recent record contains its current job while its 
previous records might include its previous jobs. An actor can 
delegate the execution of a process to another actor. Such 
information is stored in a Delegation record which contains 
delegator, delegate, subject, condition, start timestamp, and end 
timestamp. The subject might refer to processes or operations 
while the condition refers to the identifier of the subject. 

The content of an environment record includes domain, 
state, and parameters attributes. In our model, each process 
belongs to one environment while an environment contains 
multiple processes. An environment timestamp is determined 
by its parent process record (i.e., the first process executed 
within the environment). 

The attributes of an access control policy record include 
access policy ID, actor ID, subject, condition, effect, 
obligations. Such records capture the access control enforced at 
the time when the data of interest has been manipulated. The 
actor ID records the actor privileged to perform certain 
operations or processes. The policy subject might refer to 
processes, operations, or communications while the condition 
refers to the identifier (e.g., process or operation description) of 
the subject. 

2) Graph Representation 
The relational model is suitable for storing provenance in a 

relational database. However, as the standard provenance 
models (i.e., OPM and PROV) are modelled according to a 
graph-based format, developing an interoperability ontology 
mapping from these models onto our model requires a 
corresponding graph representation of our model. Thus, we 
also introduce a graph model specification of SimP. 

Our graph model consists of six nodes and twelve types of 
edges. The graph nodes include Data, Process, Operation, 
Actor, Environment, and Access Control policy. Each graph 
node has a set of attributes similar to its corresponding entity 
table described in the relational model. Furthermore, an edge 
represents a relationship between the source of the edge and 
the destination of the edge. The kinds of the relationship (and 
thus the meaning of the edges) are specified by the types of the 
nodes that are the end-points of the edges. These types of 
relations  are defined as follows:  

� used: an edge that connects a source Process or 
Operation to a destination Data. It indicates that the 
process/operation required the availability of certain 
data to be able to complete its execution.  

� wasGeneratedBy: an edge that connects a source Data 
to a destination Process or Operation. It indicates that 
the process/operation was required to initiate its 
execution for the data to have been generated. 

� wasDerivedFrom: an edge that connects a source Data 
to a destination Data. It indicates that the destination 
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data needs to have been generated for the source data to 
be generated. 

� wasExecutedBy: an edge that connects a source Process 
to a destination Actor. It indicates that a process with all 
its operations was executed by the actor. 

� wasInformedBy: an edge that connects a source 
Operation to a destination Operation. It indicates that 
the execution of the destination operation was followed 
by the execution of the source operation. 

� wasEncapsulatedBy: an edge that connects a source 
Operation to a destination Operation. It indicates that 
the execution of the source operation is part of the 
execution of the destination operation. 

� wasPartOf: an edge that connects a source Operation to 
a destination Process. It indicates that the execution of 
the source operation is part of the execution of the 
destination process. 

� wasForkedBy: an edge that connects a source Process to 
a destination Process. It indicates that the execution of 
the source process is initiated by the destination 
process. 

� wasInContext: an edge that connects a source Process to 
a destination Environment. It indicates that the 
execution of the source process was in the context of 
the destination Environment. 

� wasGrantedTo: an edge that connects a source Access 
Control Policy to a destination Actor. It indicates that 
the source access control policy was enforced on the 
destination actor at provenance capture time. 

� actedOnBehalfOf: an edge that connects a source Actor 
to a destination Actor. It indicates that the execution of 
the action performed by the source actor was delegated 
to the source actor by the destination actor. 

� wasAttributedTo: an edge that connects a source Data to 
a destination Actor. It indicates that the source data was 
manipulated by the destination actor. 

Based on the proposed provenance specifications for 
relational and graph-based representations, our framework 
supports two types of storage: relational database (i.e., 
MySQL) or graph database (i.e., Neo4J) for storing provenance 
metadata. For this sake, our framework has an abstract storage 
interface. This abstract interface communicates with either 
MySQL adapter or Neo4J adaptor. The default storage is 
Neo4J and the framework can be configured to change to the 
second database. The administrator is able to change the target 
storage type at any time but he should first import the database 
from Neo4J to MySQL (or vice versa). 

B. Interoperability With Other Provenance Models 
Provenance interoperability refers to the ability to integrate 

and convert provenance information represented by different 
provenance models in order to facilitate provenance data 
interchange. Our model supports interoperability with two 
well-known standard provenance models: OPM [5] and PROV 

[11]. Below we provide some background about OPM and 
PROV model ontologies and address the interoperation 
challenge by defining a mapping ontology that maps 
provenance information expressed in each of those two 
standard models into provenance information expressed in 
SimP. 

1) Mapping from OPM Standard Model  
OPM [5] represents provenance information as a directed 

graph which consists of nodes and edges. The nodes comprise 
three types of entities: Artifacts (i.e., data) which represent 
resources, Processes which represent actions or steps of action 
performed on artifacts, and Agents (i.e., actuators) which 
control the processes. The edges represent the dependencies 
and relations among the entities. There are five types of edges: 
used, wasControlledBy, wasGeneratedBy, wasDerivedFrom, 
and wasTriggeredBy. Each edge is distinguished by its source 
and destination: a process used an artifact, a process was 
controlled by an agent, an artifact was generated by a process, 
an artifact was derived from another artifact, and a process was 
triggered by another process. OPM also introduced the concept 
of account to represent a particular view of the provenance. 

The conversion from OPM to our provenance model is 
straightforward because of the rich vocabularies in our model. 
Table 1 shows the mapping from the OPM graph to our 
provenance model graph. Besides the intuitive mapping 
provided in Table 1, we need to consider the following:  

� OPM does not have a finer granularity level of description 
for a process as a set of operations. When converting a 
process from OPM to SimP, we create a process and an 
operation and link them by a wasPartOf edge. Mapping an 
OPM process into a SimP operation assumes that the 
relations connected with the OPM process are mapped onto 
relations with SimP operation. So the purpose of creating a 
dummy SimP process is only to host the created SimP 
operation.  

� In OPM, the intercommunication between a process and 
another process is identified by one edge type, that is, 
wasTriggeredBy, which does not capture the exact meaning 
of process-process relations (i.e., communication relation or 
parent-child relation). In our model, these relations are 
represented by three types of edges (wasForkedBy, 
wasEncapsulatedBy, and wasInformedBy). WasForkedBy 
represents the parent-child relation between two processes. 
On the other hand, wasInformedBy and 
wasEncapsulatedBy represent communications between 
two operations (in the same process or different processes). 
More specifically, a wasInformedBy represents a sequential 
communication and a wasEncapsulatedBy represents a 
composition communication. When performing a 
conversion, we map the OPM wasTriggeredBy edge to 
wasInformedBy in our model under the assumption that all 
OPM processes are related with sequential communication. 

� OPM supports a particular view of provenance by including 
the “account” attribute of the graph nodes. By contrast, in 
our model, we support such view of provenance using the 
environment node. So each node in OPM that has an 
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account attribute is mapped onto a wasInContext edge 
connecting the mapped node with the environment node. 

TABLE 1: MAPPING FROM OPM TO SIMP 

 OPM SimP 

Nodes 
Process Process, Operation, WasPartOf 
Artifact Data 
Agent Actor 

Edges 

Used Used 
WasGeneratedBy WasGeneratedBy 

WasDerivedFrom WasDerivedFrom 

WasControlledBy WasExecutedBy 

WasTriggeredBy WasInformedBy 

2) Mapping from PROV Standard Model 
A W3C provenance standard model called PROV [11] was 

published in 2013 based on a revision of OPM. A PROV graph 
contains three types of nodes: Entities (i.e., data) to represent 
resources, Activities to represent to actions performed on 
entities and Agents to model parties responsible for activities. 
Additionally, PROV includes seven types of edges: used (some 
entity was used by an activity), wasAssociatedWith (an agent 
was engaged in some activity), wasGeneratedBy (an entity was 
generated by an activity), wasDerivedFrom (an entity derived 
another entity), wasAttributedTo (an agent used an entity), 
actedOnBehalfOf (an agent acted on behalf of another agent) 
and wasInformedBy (an activity sent its result data to another 
activity). 

Table 2 shows the mapping from a PROV graph to a SimP 
graph. In addition, we address the same issues discussed for the 
mapping from OPM. 

TABLE 2: MAPPING FROM PROV TO SIMP 

 PROV SimP 

Nodes 
Activity Process, Operation, WasPartOf 
Entity Data 
Agent Actor 

Edges 

Used Used 
WasGeneratedBy WasGeneratedBy 

WasDerivedFrom WasDerivedFrom 

WasAssociatedWith WasExecutedBy 

WasInformedBy WasInformedBy 

WasAttributedTo WasAttributedTo 
ActedOnBehalfOf ActedOnBehalfOf 

By following the mapping ontology described earlier, we 
implemented a conversion tool that facilitates the conversion 
from the standard models (OPM, and PROV) to SimP model. 
The input of the tool is an XML -formatted file containing data 
provenance encoded according to the OPM model or the 
PROV model. The conversion tool stores the converted 
provenance data into our provenance storage, that is, MySQL 
or Neo4J. 

C. Integration with the CRIS System 
We integrated our provenance model in the Computational 

Research Infrastructure for Science (CRIS) [13]. CRIS is a 

scientific data management workflow cyberinfrastructure for 
scientists lacking extensive computational expertise. The 
application is currently used by a community of users in 
Agronomy, Biochemistry, Bioinformatics, and Health Care 
Engineering at Purdue University. Previously, CRIS had its 
own provenance model mainly based on versioning 
mechanism. Such mechanism is not able to capture provenance 
at different granularities since it is data centric. Our model is 
data and operational centric in that we maintain metadata about 
the derivation of every data object (i.e., what is the origin data 
object and what is the deriving operation). 

Within the CRIS system, we have a provenance logging 
component based on aspect oriented programming to 
instrument the application code. The logging component 
collects a set of appropriate provenance logs while the CRIS is 
running. The logs use the XML-based representation of 
provenance records to facilitate parsing them into the SimP 
model. Periodically, the CRIS provenance logs are fetched and 
converted into another XML-format file. The new XML file 
contains a data dependency provenance graph following the 
SimP representation ontology. 

D. Security 
Due to the sensitivity of data provenance information 

collected and stored in provenance storage, security is an 
essential factor and requirement. Hence, we incorporated an 
additional entity to specify the privileges granted to actors for 
accessing the provenance storage. Such entity, referred to as 
Provenance Query Authorization, records information about 
which actors has which authorizations. An authorization is 
expressed as subject, condition, and effect fields. The subject 
refers to the type of provenance storage entity (e.g., Processes 
entity) while the condition field identifies the provenance entity 
(e.g. Process Description value). The effect field indicates the 
authorization status (e.g., granted or revoked). 

The security requirement in our framework is thus 
addressed by the following features: a) the access control 
policy which is a main entity in the SimP model; and b) the 
provenance query authorization to secure the access to the 
sensitive information in the provenance storage. 

E. Granularity 
Another key feature of our provenance framework is the 

ability to specify and modify the granularity level needed to 
capture provenance for specific records or entities. For this 
purpose, in our provenance database, we include an additional 
entity, referred to as Granularity Policy, which is not part of 
the provenance model but it is part of our provenance 
framework.  A granularity policy enables users to specify the 
desired level of provenance details to be captured and stored 
(e.g., capturing provenance at the activity level in scientific 
provenance workflow, or the operating system level to capture 
system configurations). A Granularity Policy record includes 
the following fields: granularity policy ID, actor ID, subject, 
condition, granularity type. The subject may refer to the 
targeted process, operations, or communications, whereas the 
condition refers to the identifier of the subject. The granularity 
type is the detail level of the required provenance. 
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The multi-granularity requirement in our framework is thus 
addressed by the following features: a) a provenance model 
able to represent provenance metadata for data objects at 
various granularity levels; b) support for the integration with 
systems utilizing different provenance capturing mechanisms 
(i.e., provenance for workflow data or file system); and c) 
support for granularity preferences based on granularity 
policies. 

III. RELATED WORK 
Chimera [1], myGrid [2], and Karma [7] are examples of 

workflow-based provenance systems in which the captured 
provenance is about data-centric workflows. In Chimera, 
workflow data is represented by a special language, referred to 
as Virtual Data Language (VDL) which describes provenance 
as relationships among datasets, procedures, invocations of 
procedures or tasks. In myGrid, the provenance model 
represents service invocations and their information (i.e., 
parameters, start and end times, data products used and 
derived). Karma collects provenance at three levels (i.e., 
Workflow, Service, and Application) and it uses the concept of 
activities (e.g., Workflow-Started or Workflow-Finished) that 
take place at these three levels to collect provenance 

On the other hand, PreServ [12] is an example of process-
based provenance systems. A process-based provenance model 
represents the relationships between services and data. These 
relationships have three categories: service-service (i.e., source 
and sink service), data-data (i.e., data derivation), service-data 
(a service consumes data or a service produces data). 

An example of operating system based provenance system 
is PASS [4]. PASS works at the level of shared storage system 
to capture provenance about executed programs, their inputs, 
and outputs. Another example is ES3 [6] which records 
provenance metadata including input/output data objects, and 
domain names.  

As already mentioned, models of existing provenance 
systems apply only to specific applications/domains and do not 
support security.  OPM and PROV provide standard 
provenance representations. However, they are not able to 
represent information on access control policies. OPM Toolbox 
[9] allows one to create OPM graphs while ProvToolbox [15] 
allows one to create PROV graphs and convert between PROV 
data model representations (e.g., XML or JSON). 

The provenance model by Ni et al. [8] (extended by 
Cadenhead et al. [10]) is a general model supporting security. 
This model represents provenance data at a granularity of 
operation and thus is unable to distinguish between different 
granularity levels. Sultana and Bertino [14] provide an initial 
comprehensive provenance infrastructure which we extend in 
this paper. 

IV. CONCLUSION AND FUTURE WORK 
In this paper, we introduce SimP - a comprehensive 

provenance framework integrated with the scientific data 

management system CRIS [13]. The framework includes a 
comprehensive provenance model provided with relational and 
graph specifications. Our provenance model is interoperable 
with the OPM and PROV provenance models.  

As future work, we plan to design and implement 
specialized query languages for our framework and investigate 
efficient compression techniques for our provenance model. 
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