
SimP: Secure Interoperable Multi-Granular
Provenance Framework

Amani Abu Jabal, Elisa Bertino
Dept. of Computer Science, Purdue University, West Lafayette, USA

{aabujaba,bertino}@purdue.edu

Abstract— We propose a provenance framework which

includes an expressive provenance model able to represent the
provenance of any data object captured with various
granularities. The model is represented according to relational
and graph specifications. The framework is interoperable with
two standard provenance models: OPM and PROV. In addition,
the framework captures access control policies for data objects
and secures the provenance storage itself. We have integrated
our framework with CRIS - a real world system for managing
scientific data.

Keywords—Provenance Model, Provenance Framework,
Relational, Graph

I. INTRODUCTION
Data provenance, one kind of metadata, pertains to the

derivation history of a data object starting from its original
sources [3]. The term data object refers to data in any format
(e.g., files, database records, or workflow templates). One
example of provenance model for scientific applications is
Chimera [1] that documents workflows generating data. Data
provenance is critical for many purposes including: assessing
data quality based on its ancestral data and derivations,
detecting sources of errors and anomalies, providing an audit
trail for regulatory purposes, and assessing data
trustworthiness.

Building a comprehensive provenance infrastructure
involves addressing the following requirements:
1. multi-granualr provenance model: the provenance

infrastructure should provide a rich provenance model
capable to represent the provenance of data objects with
different granularities (e.g., file, database record, data in a
workflow);

2. provenance queries: the infrastructure should support
queries for inspecting various aspects of the provenance;

3. security: the framework should be able to capture the access
control policies, according to which users had been granted
permissions to the data, at the time of data access; the
infrastructure should also control access to provenance data
storage as provenance may be sensitive;

4. interoperability services: the framework should provide
services supporting provenance integration across different
systems.

Despite a large number of research efforts devoted to
provenance management, only a few provenance
infrastructures have been proposed. Chimera [1], myGrid [2],
and Karma [7] are examples of provenance systems. However,
the provenance models of these systems are tailored to their

specific applications and therefore are not general enough.
PASS [4] is a provenance management system for file systems;
it provides a custom query tool but it does not support security
and different granularity levels for provenance metadata. In
addition, there are two standard provenance models: Open
Provenance model (OPM) [5] and PROV [11]. These two
models are interoperable and generic so that they are able to
represent provenance for different systems and applications.
However, their major limitation is that they are not able to
represent metadata about access control policies. Ni et al. [8]
has proposed a provenance model that focuses on access
control policies for provenance. However, Ni’s model is not
able to support different granularity levels. Sultana and Bertino
[14] have designed an initial comprehensive provenance
infrastructure. However, this infrastructure has several
limitations, including the lack of a query language and lack of
interoperability services for provenance. In addition, such
framework has not been implemented nor integrated with an
actual data management system.

In this paper, we thus design and implement the first
comprehensive provenance infrastructure addressing the four
requirements discussed earlier. Our contributions include:

� A data provenance model extended from the
provenance model proposed by Sultana and Bertino
[14]. We provide specifications of this model according
to a relational and graph model.

� A mapping ontology to support interoperation of our
provenance model with both OPM and PROV.

� The integration of our provenance framework with the
Computational Research Infrastructure for Science
(CRIS) [13]. CRIS is widely used at Purdue University
for managing scientific data from many different
research areas, including biology, bio-chemistry, water
management, and social sciences.

The rest of the paper is organized as follows: Section II
introduces our provenance framework including the
provenance model, mapping ontology. Section III discusses
related work and Section IV outlines conclusions and future
work.

II. PROVENANCE FRAMEWORK
Our provenance framework as shown in Fig. 1 is composed

of several components that we discuss in what follows.

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

Figure 1: SimP Framework

A. Provenance Model
In our provenance model, called SimP, the provenance of a

data object records the history of its input data, processes,
operations, communications, actors, environments, and access
controls.

A process manipulates input data objects by performing a
sequence of operations to generate other data objects. A
process might be a service in a user application (e.g., a
workflow in a scientific experiment application) or an
operating system level process (e.g., executing a script by shell
command in UNIX). At a more detailed level, an operation
executes a sub-task which is part of a process execution. The
operations may generate/modify persistent data or intermediate
results. In provenance, it is crucial to capture the origin of the
generated data. Such information is captured by a data lineage
entity. In data lineage, a data item is described by the source
data and the operations used to derive the data item from
source data. Lineage helps in producing the data dependency
graph of a data object and implicitly describing the process
dependency.

The operations in the same process or in two different
processes interact by real or virtual messages. In our model,
such interaction is referred to as communication. There are two
types of communication between operations. The first type
refers to the completion of an operation followed by the start of
another operation. The second type refers to an operation
executed (i.e., started and completed) within the execution of
another operation. We refer to the first type of communication
as sequential and to the second as composition. A
communication may involve data passing if the operation
which initiated the communication generates data. Examples of
communications include data flow and copy-paste in UNIX.
On the other hand, a process may initialize another process to
be executed. The process which invokes the initialization is the
parent process and the newly created process is the child
process.

Processes (including their operations) and data are
manipulated by actors which can be human subjects or
workflows. Capturing information about actors, who actuate
the activities changing data objects, helps in detecting
intrusion, data misuse, or system changes. A user may
authorize other users to perform certain activities on his behalf.
In this model, data objects are attributed to actors to identify
users who inserted input data or generated output by executing
a process. Processes also have a context that affects their
execution and output. Such context is represented by the

environment which refers to a set of parameters and system
configurations. Environment information helps in
understanding the system context in which processes were
executed and data output were generated.

Our model is security-aware. Following the model by Ni et
al. [8], our model is able to represent the access control policies
in place at the time of data manipulation by the actors.
Information about access control policies include which actors
are authorized to utilize which processes and operations on
which data. Such information is modeled by the Access
Control Policy entity which includes actor and policy
information. The policy object might refer to processes, or
operations specified by the policy subject.

All fundamental provenance entities contain a domain
attribute which might be used to specify the scope of
provenance information (e.g., where processes and data
manipulations executed) especially when providing a
provenance storage for different systems. In addition, the
domain value might include more detailed scope information
(e.g., a particular application or workflow). The domain
attribute is essential for providing an abstract domain view of
the provenance graph.

Our framework supports the specification of the
provenance model according to two representations: relational
and graph.

1) Relational Representation
The relational model representation of SimP is shown in

Fig. 2. Based on the abstract description of our model, the
fundamental entities are stored in six fundamental tables (i.e.,
Data, Processes, Operations, Actors, Environments, and
Access Control Policies). In addition, there are tables
maintaining many-to-many relationships among the
fundamental tables (i.e., Lineages, Communications, Process
Input Data, Process Output Data, Operation Input Data,
Operation Output Data, and Delegations). These tables are
connected through a set of referencing relations (i.e., foreign
key constrains). Each table has a unique identifier and consists
of several attributes.

Each data record contains description, value, and actor ID.
An example of a data object is a file. The actual data object
identifier is different from data record identifier in the
provenance storage. Suppose that the data object is a script file
named fi. This file might be edited by different users at
different times. Thus, the provenance storage contains multiple
records for fi and each record is identified by different data ID
but the description attributes of these records are similar (i.e.
fi). In our model, every data object is attributed to an actor to
trace who created the object or generated it by executing a
process.

Each process record has a unique ID and is executed by an
actor in a certain environment. A process manipulates certain
data and may generate other data so process’s input and output
data are recorded in the Process Input Data and Process Output
Data tables. Processes are categorized into two types:
application process or system process. If the process belongs to
an application (e.g., a scientific workflow), it contains a
workflow ID. Otherwise, it is a system process. In the case of a

2

system process, the workflow ID attribute refers to the
workflow hosting the application process which encapsulates
the system process. Each process has a description which is the
actual identifier of the process (e.g., executing the script file
(fi)). A process might be executed multiple times. Therefore, in
order to capture provenance for the same process multiple
times we have an automatic generated ID to distinguish process
records. A process might be initialized (i.e., forked) by another
process so we store such information in the parent process
attribute.

Operation record attributes include ID, description, and
process ID. Depending on applications, the operation
description attribute might contain different definitions (e.g., a
function name or a block of source code statements). The
output of an operation might be intermediate or persistent. The
output is intermediate if it is used as input for another operation
while a persistent output is final. The persistent output of
operations is considered also as the output for the container
process. On the other hand, all input data of a process can be
input data for all its contained operations.

Figure 2: ER-Diagram of the SimP Model

Communication record attributes include description,
carrier, the source operation ID, the destination operation ID,
and type of communication. The detail level of the
communication description depends on the applications. The
communication channel (e.g., HTTP or SOAP) is described by
the carrier attribute. The type of communication between two
operations might be sequential or composition.

Lineage record attributes include lineage ID, data ID, and
the ID of the operation that produced this data operating on the

input data identified by the data ID. A data item has multiple
lineage records if it is generated by an operation which
received multiple input data.

The attributes of an actor record include actor ID,
description, and role. A role is a job of the actor. For an actor,
the most recent record contains its current job while its
previous records might include its previous jobs. An actor can
delegate the execution of a process to another actor. Such
information is stored in a Delegation record which contains
delegator, delegate, subject, condition, start timestamp, and end
timestamp. The subject might refer to processes or operations
while the condition refers to the identifier of the subject.

The content of an environment record includes domain,
state, and parameters attributes. In our model, each process
belongs to one environment while an environment contains
multiple processes. An environment timestamp is determined
by its parent process record (i.e., the first process executed
within the environment).

The attributes of an access control policy record include
access policy ID, actor ID, subject, condition, effect,
obligations. Such records capture the access control enforced at
the time when the data of interest has been manipulated. The
actor ID records the actor privileged to perform certain
operations or processes. The policy subject might refer to
processes, operations, or communications while the condition
refers to the identifier (e.g., process or operation description) of
the subject.

2) Graph Representation
The relational model is suitable for storing provenance in a

relational database. However, as the standard provenance
models (i.e., OPM and PROV) are modelled according to a
graph-based format, developing an interoperability ontology
mapping from these models onto our model requires a
corresponding graph representation of our model. Thus, we
also introduce a graph model specification of SimP.

Our graph model consists of six nodes and twelve types of
edges. The graph nodes include Data, Process, Operation,
Actor, Environment, and Access Control policy. Each graph
node has a set of attributes similar to its corresponding entity
table described in the relational model. Furthermore, an edge
represents a relationship between the source of the edge and
the destination of the edge. The kinds of the relationship (and
thus the meaning of the edges) are specified by the types of the
nodes that are the end-points of the edges. These types of
relations are defined as follows:

� used: an edge that connects a source Process or
Operation to a destination Data. It indicates that the
process/operation required the availability of certain
data to be able to complete its execution.

� wasGeneratedBy: an edge that connects a source Data
to a destination Process or Operation. It indicates that
the process/operation was required to initiate its
execution for the data to have been generated.

� wasDerivedFrom: an edge that connects a source Data
to a destination Data. It indicates that the destination

3

data needs to have been generated for the source data to
be generated.

� wasExecutedBy: an edge that connects a source Process
to a destination Actor. It indicates that a process with all
its operations was executed by the actor.

� wasInformedBy: an edge that connects a source
Operation to a destination Operation. It indicates that
the execution of the destination operation was followed
by the execution of the source operation.

� wasEncapsulatedBy: an edge that connects a source
Operation to a destination Operation. It indicates that
the execution of the source operation is part of the
execution of the destination operation.

� wasPartOf: an edge that connects a source Operation to
a destination Process. It indicates that the execution of
the source operation is part of the execution of the
destination process.

� wasForkedBy: an edge that connects a source Process to
a destination Process. It indicates that the execution of
the source process is initiated by the destination
process.

� wasInContext: an edge that connects a source Process to
a destination Environment. It indicates that the
execution of the source process was in the context of
the destination Environment.

� wasGrantedTo: an edge that connects a source Access
Control Policy to a destination Actor. It indicates that
the source access control policy was enforced on the
destination actor at provenance capture time.

� actedOnBehalfOf: an edge that connects a source Actor
to a destination Actor. It indicates that the execution of
the action performed by the source actor was delegated
to the source actor by the destination actor.

� wasAttributedTo: an edge that connects a source Data to
a destination Actor. It indicates that the source data was
manipulated by the destination actor.

Based on the proposed provenance specifications for
relational and graph-based representations, our framework
supports two types of storage: relational database (i.e.,
MySQL) or graph database (i.e., Neo4J) for storing provenance
metadata. For this sake, our framework has an abstract storage
interface. This abstract interface communicates with either
MySQL adapter or Neo4J adaptor. The default storage is
Neo4J and the framework can be configured to change to the
second database. The administrator is able to change the target
storage type at any time but he should first import the database
from Neo4J to MySQL (or vice versa).

B. Interoperability With Other Provenance Models
Provenance interoperability refers to the ability to integrate

and convert provenance information represented by different
provenance models in order to facilitate provenance data
interchange. Our model supports interoperability with two
well-known standard provenance models: OPM [5] and PROV

[11]. Below we provide some background about OPM and
PROV model ontologies and address the interoperation
challenge by defining a mapping ontology that maps
provenance information expressed in each of those two
standard models into provenance information expressed in
SimP.

1) Mapping from OPM Standard Model
OPM [5] represents provenance information as a directed

graph which consists of nodes and edges. The nodes comprise
three types of entities: Artifacts (i.e., data) which represent
resources, Processes which represent actions or steps of action
performed on artifacts, and Agents (i.e., actuators) which
control the processes. The edges represent the dependencies
and relations among the entities. There are five types of edges:
used, wasControlledBy, wasGeneratedBy, wasDerivedFrom,
and wasTriggeredBy. Each edge is distinguished by its source
and destination: a process used an artifact, a process was
controlled by an agent, an artifact was generated by a process,
an artifact was derived from another artifact, and a process was
triggered by another process. OPM also introduced the concept
of account to represent a particular view of the provenance.

The conversion from OPM to our provenance model is
straightforward because of the rich vocabularies in our model.
Table 1 shows the mapping from the OPM graph to our
provenance model graph. Besides the intuitive mapping
provided in Table 1, we need to consider the following:

� OPM does not have a finer granularity level of description
for a process as a set of operations. When converting a
process from OPM to SimP, we create a process and an
operation and link them by a wasPartOf edge. Mapping an
OPM process into a SimP operation assumes that the
relations connected with the OPM process are mapped onto
relations with SimP operation. So the purpose of creating a
dummy SimP process is only to host the created SimP
operation.

� In OPM, the intercommunication between a process and
another process is identified by one edge type, that is,
wasTriggeredBy, which does not capture the exact meaning
of process-process relations (i.e., communication relation or
parent-child relation). In our model, these relations are
represented by three types of edges (wasForkedBy,
wasEncapsulatedBy, and wasInformedBy). WasForkedBy
represents the parent-child relation between two processes.
On the other hand, wasInformedBy and
wasEncapsulatedBy represent communications between
two operations (in the same process or different processes).
More specifically, a wasInformedBy represents a sequential
communication and a wasEncapsulatedBy represents a
composition communication. When performing a
conversion, we map the OPM wasTriggeredBy edge to
wasInformedBy in our model under the assumption that all
OPM processes are related with sequential communication.

� OPM supports a particular view of provenance by including
the “account” attribute of the graph nodes. By contrast, in
our model, we support such view of provenance using the
environment node. So each node in OPM that has an

4

account attribute is mapped onto a wasInContext edge
connecting the mapped node with the environment node.

TABLE 1: MAPPING FROM OPM TO SIMP

 OPM SimP

Nodes
Process Process, Operation, WasPartOf
Artifact Data
Agent Actor

Edges

Used Used
WasGeneratedBy WasGeneratedBy

WasDerivedFrom WasDerivedFrom

WasControlledBy WasExecutedBy

WasTriggeredBy WasInformedBy

2) Mapping from PROV Standard Model
A W3C provenance standard model called PROV [11] was

published in 2013 based on a revision of OPM. A PROV graph
contains three types of nodes: Entities (i.e., data) to represent
resources, Activities to represent to actions performed on
entities and Agents to model parties responsible for activities.
Additionally, PROV includes seven types of edges: used (some
entity was used by an activity), wasAssociatedWith (an agent
was engaged in some activity), wasGeneratedBy (an entity was
generated by an activity), wasDerivedFrom (an entity derived
another entity), wasAttributedTo (an agent used an entity),
actedOnBehalfOf (an agent acted on behalf of another agent)
and wasInformedBy (an activity sent its result data to another
activity).

Table 2 shows the mapping from a PROV graph to a SimP
graph. In addition, we address the same issues discussed for the
mapping from OPM.

TABLE 2: MAPPING FROM PROV TO SIMP

 PROV SimP

Nodes
Activity Process, Operation, WasPartOf
Entity Data
Agent Actor

Edges

Used Used
WasGeneratedBy WasGeneratedBy

WasDerivedFrom WasDerivedFrom

WasAssociatedWith WasExecutedBy

WasInformedBy WasInformedBy

WasAttributedTo WasAttributedTo
ActedOnBehalfOf ActedOnBehalfOf

By following the mapping ontology described earlier, we
implemented a conversion tool that facilitates the conversion
from the standard models (OPM, and PROV) to SimP model.
The input of the tool is an XML -formatted file containing data
provenance encoded according to the OPM model or the
PROV model. The conversion tool stores the converted
provenance data into our provenance storage, that is, MySQL
or Neo4J.

C. Integration with the CRIS System
We integrated our provenance model in the Computational

Research Infrastructure for Science (CRIS) [13]. CRIS is a

scientific data management workflow cyberinfrastructure for
scientists lacking extensive computational expertise. The
application is currently used by a community of users in
Agronomy, Biochemistry, Bioinformatics, and Health Care
Engineering at Purdue University. Previously, CRIS had its
own provenance model mainly based on versioning
mechanism. Such mechanism is not able to capture provenance
at different granularities since it is data centric. Our model is
data and operational centric in that we maintain metadata about
the derivation of every data object (i.e., what is the origin data
object and what is the deriving operation).

Within the CRIS system, we have a provenance logging
component based on aspect oriented programming to
instrument the application code. The logging component
collects a set of appropriate provenance logs while the CRIS is
running. The logs use the XML-based representation of
provenance records to facilitate parsing them into the SimP
model. Periodically, the CRIS provenance logs are fetched and
converted into another XML-format file. The new XML file
contains a data dependency provenance graph following the
SimP representation ontology.

D. Security
Due to the sensitivity of data provenance information

collected and stored in provenance storage, security is an
essential factor and requirement. Hence, we incorporated an
additional entity to specify the privileges granted to actors for
accessing the provenance storage. Such entity, referred to as
Provenance Query Authorization, records information about
which actors has which authorizations. An authorization is
expressed as subject, condition, and effect fields. The subject
refers to the type of provenance storage entity (e.g., Processes
entity) while the condition field identifies the provenance entity
(e.g. Process Description value). The effect field indicates the
authorization status (e.g., granted or revoked).

The security requirement in our framework is thus
addressed by the following features: a) the access control
policy which is a main entity in the SimP model; and b) the
provenance query authorization to secure the access to the
sensitive information in the provenance storage.

E. Granularity
Another key feature of our provenance framework is the

ability to specify and modify the granularity level needed to
capture provenance for specific records or entities. For this
purpose, in our provenance database, we include an additional
entity, referred to as Granularity Policy, which is not part of
the provenance model but it is part of our provenance
framework. A granularity policy enables users to specify the
desired level of provenance details to be captured and stored
(e.g., capturing provenance at the activity level in scientific
provenance workflow, or the operating system level to capture
system configurations). A Granularity Policy record includes
the following fields: granularity policy ID, actor ID, subject,
condition, granularity type. The subject may refer to the
targeted process, operations, or communications, whereas the
condition refers to the identifier of the subject. The granularity
type is the detail level of the required provenance.

5

The multi-granularity requirement in our framework is thus
addressed by the following features: a) a provenance model
able to represent provenance metadata for data objects at
various granularity levels; b) support for the integration with
systems utilizing different provenance capturing mechanisms
(i.e., provenance for workflow data or file system); and c)
support for granularity preferences based on granularity
policies.

III. RELATED WORK
Chimera [1], myGrid [2], and Karma [7] are examples of

workflow-based provenance systems in which the captured
provenance is about data-centric workflows. In Chimera,
workflow data is represented by a special language, referred to
as Virtual Data Language (VDL) which describes provenance
as relationships among datasets, procedures, invocations of
procedures or tasks. In myGrid, the provenance model
represents service invocations and their information (i.e.,
parameters, start and end times, data products used and
derived). Karma collects provenance at three levels (i.e.,
Workflow, Service, and Application) and it uses the concept of
activities (e.g., Workflow-Started or Workflow-Finished) that
take place at these three levels to collect provenance

On the other hand, PreServ [12] is an example of process-
based provenance systems. A process-based provenance model
represents the relationships between services and data. These
relationships have three categories: service-service (i.e., source
and sink service), data-data (i.e., data derivation), service-data
(a service consumes data or a service produces data).

An example of operating system based provenance system
is PASS [4]. PASS works at the level of shared storage system
to capture provenance about executed programs, their inputs,
and outputs. Another example is ES3 [6] which records
provenance metadata including input/output data objects, and
domain names.

As already mentioned, models of existing provenance
systems apply only to specific applications/domains and do not
support security. OPM and PROV provide standard
provenance representations. However, they are not able to
represent information on access control policies. OPM Toolbox
[9] allows one to create OPM graphs while ProvToolbox [15]
allows one to create PROV graphs and convert between PROV
data model representations (e.g., XML or JSON).

The provenance model by Ni et al. [8] (extended by
Cadenhead et al. [10]) is a general model supporting security.
This model represents provenance data at a granularity of
operation and thus is unable to distinguish between different
granularity levels. Sultana and Bertino [14] provide an initial
comprehensive provenance infrastructure which we extend in
this paper.

IV. CONCLUSION AND FUTURE WORK
In this paper, we introduce SimP - a comprehensive

provenance framework integrated with the scientific data

management system CRIS [13]. The framework includes a
comprehensive provenance model provided with relational and
graph specifications. Our provenance model is interoperable
with the OPM and PROV provenance models.

As future work, we plan to design and implement
specialized query languages for our framework and investigate
efficient compression techniques for our provenance model.

ACKNOWLEDGMENT
This work is supported in part by NSF under award CICI-

1547358. The opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of any of the
sponsors.

REFERENCES
[1] Foster, I., Vöckler, J., Wilde, M. and Zhao, Y., 2002. Chimera: A virtual

data system for representing, querying, and automating data derivation.
In Scientific and Statistical Database Management, 2002. Proceedings.
14th International Conference on (pp. 37-46). IEEE.

[2] Zhao, J., Goble, C., Stevens, R. and Bechhofer, S., 2004. Semantically
linking and browsing provenance logs for e-science. In Semantics of a
Networked World. Semantics for Grid Databases (pp. 158-176).
Springer Berlin Heidelberg.

[3] Simmhan, Y.L., Plale, B. and Gannon, D., 2005. A survey of data
provenance in e-science. ACM Sigmod Record, 34(3), pp.31-36.

[4] Muniswamy-Reddy, K.K., Holland, D.A., Braun, U. and Seltzer, M.I.,
2006, June. Provenance-Aware Storage Systems. In USENIX Annual
Technical Conference, General Track (pp. 43-56).

[5] Moreau, L., Freire, J., JFutrelle, J., McGrath, R.E., Myers, J., aulson, P.
The Open Provenance Model (v1.00), Tech. Rep., University of
Southampton, URL http://eprints.ecs.soton.ac.uk/14979/1/opm.pdf,
2007.

[6] Bowers, S., McPhillips, T., Riddle, S., Anand, M.K. and Ludäscher, B.,
2008. Kepler/pPOD: Scientific workflow and provenance support for
assembling the tree of life. In Provenance and Annotation of Data and
Processes (pp. 70-77). Springer Berlin Heidelberg

[7] Simmhan, Y.L., Plale, B. and Gannon, D., 2008. Query capabilities of
the Karma provenance framework. Concurrency and Computation:
Practice and Experience, 20(5), pp.441-451.

[8] Ni, Q., Xu, S., Bertino, E., Sandhu, R. and Han, W., 2009. An access
control language for a general provenance model. In Secure Data
Management (pp. 68-88). Springer Berlin Heidelberg.

[9] OPM Toolbox, https://github.com/lucmoreau/OpenProvenanceModel
[10] Cadenhead, T., V. Khadilkar, M. Kantarcioglu, and B. Thuraisingham.

"A language for provenance access control." In CODASPY, pp. 133-
144. ACM, 2011.

[11] PROV-Overview: http://www.w3.org/TR/2013/NOTE-prov-overview-
20130430/

[12] Hoekstra, R. and Groth, P., 2013. Linkitup: link discovery for research
data. In AAAI Fall Symposium Series Technical Reports (No. FS-13-01,
pp. 28-35). AAAI Publications.

[13] Dragut, Eduard C., et al. "CRIS—Computational research infrastructure
for science." Information Reuse and Integration (IRI), 2013 IEEE 14th
International Conference on. IEEE, 2013.

[14] Sultana, S. and Bertino, E., 2015. A Distributed System for The
Management of Fine-grained Provenance. Journal of Database
Management (JDM), 26(2), pp.32-47.

[15] ProvToolbox, https://github.com/lucmoreau/ProvToolbox

6

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
